
1

24.2.2020.

Data and Web Science Group
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik

Universität Mannheim

CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International

2. Boolean Retrieval and Term Indexing
Prof. Dr. Goran Glavaš

Dr.Khawla Hussein

Pu

2

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

After this lecture, you’ll...

 Know what Boolean retrieval is and what Boolean queries look like

 Know what inverted index is and how to use it to answer Boolean queries

 Understand skip lists and how they may make Boolean retrieval more efficient

 Comprehend phrase queries and understand biword indexes

 Understand the structure of the positional index and how it can be used to
support phrase queries as well as proximity queries

3

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Outline

 Recap of Lecture #1

 Basic Boolean retrieval

 Inverted index

 Skip lists and faster merges

 Positional index, phrase and proximity queries

4

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Recap of the previous lecture

 Basic notions of information retrieval
 Q: What is information retrieval and what are the elements of the retrieval process?

 Q: What is an information need?

 Q: What is relevance?

 Text representations and preprocessing
 Q: Differences between unstructured and weakly-structured representations

 Q: What are the common text preprocessing steps?

 Q: Explain what tokenization, lemmatization, and stemming are?

 Q: What are stopwords and why do we remove them?

 General information retrieval model
 Q: What are the three components of every information retrieval system?

 Q: What are index terms?

5

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Recap of the previous lecture

 Index terms are all terms in the collection (i.e., the vocabulary)
 Except those we ignore in preprocessing (like stopwords)

 The set of all index terms: K = {k1, k2, ..., kt}

 Each term ki is, for each document dj, assigned a weight wij

 The weight of the index terms not appearing in the document is 0

 Document dj is represented by term vector [w1j, w2j, ..., wtj] where t is the number
of index terms

 Let g be the function that computes the weights, i.e., wij = g(ki, dj)

 Different choices for the weight-computation function g and the ranking function
r define different IR models

 Today we examine what the weighting function g and ranking function r look
like for Boolean retrieval

6

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Outline

 Recap of Lecture #1

 Basic Boolean retrieval

 Inverted index

 Skip lists and faster merges

 Positional index, phrase and proximity queries

7

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval: case study

 Case study: you’re an SciFi and Fantasy fan who is studying similarities and
differences between the Star Trek, Lord of the Rings, and Harry Potter

 Information need: Contexts in which there are mentions of “aliens” AND
“swords” but NOT “wizards”

 Q: How would you do this?

 Attempt #1 (regular Joe’s approach): Let’s (1) grep all documents for “aliens” and
“swords” and then (2) take out the lines containing “wizards”
 Q: Why is this not a good approach?

 A: Slow for large corpora

 A: Does not support other types of information needs, e.g., find documents where
“aliens” appears near “swords”

8

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval

 Boolean retrieval model is arguably the simplest IR model

 Queries are Boolean expressions
 E.g., “aliens” AND “swords” AND NOT “wizards”

 The search engine returns all documents from the collection that satisfy the
Boolean expression

9

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval

 Let’s analyze Boolean IR model in terms of three common IR components

1. Query representation

 Query q is given as a propositional logic formula over index terms

 Index terms are connected via Boolean operators (∧, ∨) and can be negated (¬)

 Being a propositional logic formula, each query can be transformed into
disjunctive normal form (DNF)

 q = c1 ∨ c2 ∨ · · · ∨ cn – where cl is the l-th conjunctive component of q’s DNF

 E.g., cl = tl1 ∧ ¬tl2 ∧ … ∧ tlk

10

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval

 Let’s analyze Boolean IR model in terms of three common IR components

2. Document representation
 Each document d in the collection is represented as a bag of words

 Strictly speaking, it’s a set of words, not a bag (i.e., not a multiset)

 The frequency of terms is irrelevant, only whether the term appears in the document

 Thus, term weights are all binary – wij ∈ {0, 1}

 wij = 1 if document dj contains the index term ti , w ij = 0 otherwise

11

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval

 Let’s analyze Boolean IR model in terms of three common IR components

3. Relevance of the document for the query

 The document is relevant for the query if it satisfies the propositional logic
formula of the query

 As queries are in DNF this means the document must satisfy at least one of the
conjunctive components cl of the query q

1, if ∃cl | ∀ti ∈ terms(cl), wij = 1

0, otherwise.
relevance(dj, q) =

12

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval

 Does Google use Boolean retrieval?
 Google’s default interpretation of the query “Frodo gave Sam the sword” is

“Frodo” AND “gave” AND “Sam” AND “sword”

 A retrieved document might not contain some of the query terms if
 The full Boolean expression generates very few relevant documents

 The result contains some morphological variation or a synonym of the term

 If your query is long, Google discards less relevant terms

 Boolean retrieval and results ranking
 Boolean retrieval returns matching documents in no particular order

 Well-designed search engines need to rank the relevant results

13

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval – example

 Let us have the following set of index terms
 K = { “Frodo”, “Sam”, “blue”, “sword”, “orc”, “Mordor”}

 Let us have the following collection of documents
 d1: „Frodo stabbed the orc with the red sword”

 d2: „Frodo and Sam used the blue lamp to locate orcs”

 d3: „Sam killed many orcs in Mordor with the blue sword”

 Which documents are relevant for the following queries?
 q1: („Frodo” AND „orc” AND „sword”) OR („Frodo” AND „blue”)

 {d1, d2}

 q2: („Sam” AND „blue” AND NOT „Frodo”) OR („Sam” AND „orc” AND „Mordor”)
 {d3}

14

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval – incidence matrix

 Attempt #2: use the incidence matrix to answer queries like
 „Sam” AND „blue” AND NOT „Frodo”

 Term-document incidence matrix

Term d1: „Frodo stabbed the orc
with the red sword”

d2: Frodo and Sam used the
blue lamp to locate orcs

d3: Sam killed many orcs in
Mordor with the blue sword

Frodo True (1) True (1) False (0)

Sam False (0) True (1) True (1)

blue False (0) True (1) True (1)

sword True (1) False (0) True (1)

orc True (1) True (1) True (1)

Mordor False (0) False (0) True (1)

15

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval – incidence matrix

 Query: „Sam” AND „blue” AND NOT „Frodo”

 „Sam”: d1 – False; d2 – True; d3 – True -> [0, 1, 1]

 „blue”: d1 – False; d2 – True; d3 – True -> [0, 1, 1]

 „Frodo”: d1 –True; d2 – True; d3 – False -> [1, 1, 0]

Term d1: Frodo stabbed the orc
with the red sword

d2: Frodo and Sam used the
blue lamp to locate orcs

d3: Sam killed many orcs in
Mordor with the blue sword

Frodo True (1) True (1) False (0)

Sam False (0) True (1) True (1)

blue False (0) True (1) True (1)

16

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval – incidence matrix

 Incidence matrix – 0/1 vector for each index term

 To answer the query „Sam” AND „blue” AND NOT „Frodo” we just need to
1. Take the vectors for terms „Sam” and „blue”

„Sam” -> [0, 1, 1]; „blue” -> [0, 1, 1]

2. Invert the vector for the term „Frodo”

„Frodo” -> [1, 1, 0]; thus NOT „Frodo” -> [0, 0, 1]

3. Perform a bitwise conjunction (bitwise AND) on these three vectors
[0, 1, 1] AND [0, 1, 1] AND [0, 0, 1] -> [0, 0, 1]

 d3 is the only relevant document for the query

17

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval – incidence matrices

 Incidence matrix is a good solution for small collections

 However, real world collections can be very large
 E.g., N = 1 million of documents, each around 1000 words

 E.g., 500 thousand index terms

 The incidence matrix size is 500K x 1M -> 0.5 trillion elements (0’s and 1’s)
 But only 1000 x 1M = 1 billion 1’s – incidence matrix is very sparse

 Q: What would be a better solution?
 A representation that would remedy for the sparseness of incidence matrices

 A: We can only store positions of 1’s
 We know that the rest are 0’s

18

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Outline

 Recap of Lecture #1

 Basic Boolean retrieval

 Inverted index

 Skip lists and faster merges

 Positional index, phrase and proximity queries

19

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Inverted index

 Inverted index is a data structure for computationally efficient retrieval

 Inverted index contains a list of references to documents for all index terms
 For each term t we store the list of all documents that contain t
 Documents are represented with their identifier numbers (ordinal, starting from 1)

„Frodo” -> [1, 2, 7, 19, 174, 210, 331, 2046]
„Sam” -> [2, 3, 4, 7, 11, 94, 210, 1137]
„blue” -> [2, 3, 24, 2001]

 The list of documents that contains a term is called a posting list (or just posting)
 In memory, postings are implemented as either

 Linked lists or

 Variable length arrays (Q: why not fixed length arrays?)

 Q: Postings are always sorted. Why?

20

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Inverted index – query processing

 The inverted index is an efficient structure for storing term incidences
 Requires much less storage than full incidence matrix

 But we need to couple the storage with an efficient algorithm(s) for finding
relevant documents for queries

 Consider the query „Sam” AND „Frodo”
1. Retrieve the posting list for the term „Sam”

„Sam” -> [2, 3, 4, 7, 11, 94, 210, 1137]

2. Retrieve the posting list for the term „Frodo”
„Frodo” -> [1, 2, 6, 7, 19, 174, 210, 331, 2046]

3. Find the intersection between the two posting lists (i.e., „merge” the postings)
[2, 3, 4, 7, 11, 94, 210, 1137] ∩ [1, 2, 7, 19, 174, 210, 331, 2046] -> [2, 7, 210]

21

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

The merge

 If posting lists are sorted, the time of the merge is linear in the total number of
posting entries
 The „merge” is performed by simoultaneously walking through the two postings

 If the first posting has x elements and second posting has y elements, the (worst-
case) time complexity of the merge is O(x+y)

 If the posting lists would not be sorted, the merge complexity would be quadratic

 For each element in the first list, we must, in the worst case go through the whole
second list

 Complexity is O(xy)

22

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

The merge algorithm

 The following is the pseudocode of the algorithm for merging (sorted) postings

23

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

The merge algorithm

 The given algorithm works for merges for queries of type t1 AND t2

 What about other query constructs?
 t1 AND NOT t2

 t1 OR t2

 Q: Can we perform the merge for these constructs in linear time O(x+y)?

 What about an arbitrary Boolean formula?
 („Sam” OR „Frodo”) AND NOT („orc” OR „Mordor”)

 Q: Can we always merge in linear time?
 Linear in what?

 Q: Can we maybe do better than linear complexity?

24

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Query optimization

 What is the best order for processing the query?

 Consider a query which is a conjunction of n terms
 We get the postings list for each of the n terms and merge them together

 Merge is a binary operator
 Q: Does it matter in which order we do the merges?

Query: „Frodo” AND „Sam” AND „blue”

Postings:

„Frodo” -> [1, 2, 7, 19, 174, 210, 331, 2046]

„Sam” -> [2, 3, 4, 7, 11, 94, 210, 1137]

„blue” -> [2, 3, 24, 2001]

25

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Query optimization

 The set of binary merges is going to be executed fastest if we start from the
shortest postings and perform merges in increasing order of posting length

Query: „Frodo” AND „Sam” AND „blue”

Postings:

„Frodo” -> [1, 2, 7, 19, 174, 210, 2046] (length = 7)

„Sam” -> [2, 3, 4, 7, 11, 94, 210, 1137] (length = 8)

„blue” -> [2, 3, 24, 2001] (length = 4)

Merges (count comparisons):

(„Frodo” AND „Sam”) AND „blue” -> complexity: 11 + 5 = 16 comparisons

„Frodo” AND („Sam” AND „blue”) -> complexity: 9 + 3 = 12 comparisons

(„Frodo” AND „blue”) AND „Sam” -> complexity: 8 + 1= 9 comparisons

26

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Merge algorithm for conjunctive queries

 The following is the algorithm for efficient merging of conjunctive queries with
multiple terms

27

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

General Boolean query optimization

 Each Boolean query can be transformed to a disjunctive normal form (DNF)
(t11 AND ... AND t1n) OR

(t21 AND ... AND t2n) OR

... OR

(tk1 AND ... AND tkn)

 Algorithm:
1. For each conjunction (tj1 AND ... AND tjn), perform the optimized conjunction

merge algorithm from the previous slide and obtain conjunction postings

2. For each pair of conjunction postings estimate the cost of performing an OR
operation as the sum of lengths of these two conjunction postings

3. Process in increasing order of OR sizes

28

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

General Boolean query optimization

 Query:
(„Frodo” AND „orc” AND „sword”) OR („Frodo” AND „blue”) OR („orc” AND „blue”)

 Term postings:
„Frodo” -> [1, 2, 7, 19, 174, 210, 331, 2046] (length = 8)
„orc” -> [2, 3, 7, 11, 94, 210] (length = 6)
„sword” -> [2, 7, 24, 2001] (length = 4)
„blue” -> [8, 19, 94] (length = 3)

 Conjunction postings:
(„Frodo” AND „orc” AND „sword”) -> [2,7]
(„Frodo” AND „blue”) -> [19]
(„orc” AND „blue”) -> [94]

 OR merges:
 First: („Frodo” AND „blue”) OR („orc” AND „blue”) -> [19, 94]
 Second: result first OR („Frodo” AND „orc” AND „sword”) -> [2,7,19,94]

 Exercise: compute the real complexity of processing this query

29

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Outline

 Recap of Lecture #1

 Basic Boolean retrieval

 Inverted index

 Skip pointers and faster merges

 Positional index, phrase and proximity queries

30

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Basic merge and linear complexity

 If posting lists are sorted, the time of the merge is linear in the total number of
posting entries
 The „merge” is performed by simoultaneously walking through the two postings

 If the first posting has x elements and second posting has y elements, the
computational complexity of the merge is O(x+y)

 Q: Can we do better than linear complexity?
 Yes, if we are dealing with read-only indexes!

 Q: How?
 By enriching postings with additional pointers

 These pointers are called skip pointers

31

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Merge with skip pointers

 Consider the merge between the following postings:
„Sam” -> [1, 2, 7, 174, 210, 331, 2046]

„Frodo” -> [2, 3, 4, 7, 21, 29, 38, 91, 101, 122, 134, 171, 1137]

 With the basic merge algorithm we need to compare all red numbers (21, 29, ..., 171)
from the „Frodo” posting list with 174 from the ”Sam” posting list

 What if we could skip directly from 21 to 171 in the „Frodo” posting list?
 We would save many comparisons

 This would not affect the merge result at all

 The idea is to skip parts of posting lists that lead to empty results
 Central question: where do we place the skip pointers?

32

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Augmenting postings with skip pointers

„Sam” -> [1, 2, 7, 174, 210, 331, 2046]

„Frodo” -> [2, 3, 4, 7, 21, 29, 38, 91, 101, 122, 134, 171, 1137]

 Suppose we went through the posting lists until we processed 7 in both lists
 I.e., we found a match at 7 and added it to the merge result

 We then have element 174 in the „Sam” list and 21 in the „Frodo” list
 Instead of going linearly through the lists, we can try to jump via skip pointers

 Skip successor of 21 in the „Frodo” list is 134, which is still smaller than the current
element 174 in the „Sam” list

 This means that we can safely, i.e., without missing any matches, skip to 134 in the
„Frodo” list

 Q: What if the skip from 21 in „Frodo” list was larger than 174?

174 2046

21 134 1137

33

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Merge with skip pointers

 The following is the pseudocode of the merge algorithm on lists augmented with
skip pointers

34

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Merge with skip pointers

 Central questions:
 How frequent should the skips be?
 Where to place the skip pointers?

 There is a tradeoff:
 Option 1: More skips

 Shorter skip spans
 More likely to skip
 But a lot of skip position comparisons (so the complexity isn’t very sublinear)
 More data to store (larger index)

 Option 2: Fewer skips
 Longer skip spans
 Less likely to skip (fewer successful skips)
 But fewer pointer comparisons
 Less data to store (smaller index)

35

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Placing skips

 Simple heuristic that works well in practice
 For postings of length L, use L evenly-spaced skip pointers

 Easy to implement if the index is read-only
 The lengths of the posting lists do not change

 Maintenance required when index is updated
 Not recommended for indexes that are being updated frequently

 This heuristic ignores the distribution of terms over indexed documents
 Q: How to improve the placement of skip pointers taking into account distributions?

36

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Outline

 Recap of Lecture #1

 Basic Boolean retrieval

 Inverted index

 Skip pointers and faster merges

 Positional index, phrase and proximity queries

37

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Phrase queries

 Some queries contain phrases which are not meant to be split into terms, e.g.,
 Named entities („Berkeley university”, „San Francisco”)

 Collocations and idioms („fast food”, „hot potato”)

 We don’t want documents containing these words separately to be considered
relevant
 E.g., „The lady thought the tea was too hot and the potatoes were not well-cooked”

should not be relevant for the query „hot potato”

 For handling phrase queries, it is no longer enough to store only posting lists for
individual terms

38

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Phrase queries: biword index

 Besides individual terms, we could additionally index pairs of consecutive terms

 For example, the text „Frodo stabbed the orc with the red sword” would generate
the following biwords (with stopword removal in place):
 „Frodo stabbed”, „stabbed orc”, „orc red”, „red sword”

 Each of the biwords becomes an index term

 The query is also transformed into biwords for lookup and merging
 Query: „Sam stabbed the orc” -> „Sam stabbed”, „stabbed orc”

 The query processing – posting lookup and merging – is then performed in
exactly the same way as for single-token terms

39

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Phrase queries: extended biwords

 Indexing all biwords often doesn’t make much sense
 The vast majority of biwords are not real-world „concepts” users would look for

 Not named entities, collocations, idioms, etc.

 The number of biwords in the document collection is much larger than number of
terms (combinatorial explosion)

 Extension: Let’s index only biwords that have a higher probability of being
concepts that users might search for
 Biwords that satisfy certain part-of-speech patterns (e.g., noun phrases)

 E.g., all sequences of POS-tags of the form NX*N where N is a noun and X is a
preposition or article
 E.g., „catcher in the rye” has the POS-signature N X X N

 Annotate with parts-of-speech and extract extended biwords (NX*N)
 Look up in the index: „catcher rye”

40

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Issues with biword indexes

1. Indexing biwords can lead to false positives
 Because we index many biwords that are not concepts

 E.g., document „Pequenos Angeles, United States won the competition” will be
relevant for the query „Los Angeles, United States”
 Both representations will contain the non-conceptual biword „Angeles United”

2. Large index
 Combinatorial explosion

 Storing all biwords creates very large index

 Storing tri-words already infeasible for reasonably large collections

 Alternative approach
 Index only small subset of most frequent or most relevant biwords (or larger n-

words), along with unigram terms

41

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Phrase queries: positional index

 A better alternative to biword (or generally n-word) indexes are positional indexes

 Positional index is an extended index
 For each document that contains the index term t we store positions of all tokens of term t in

the document

 Format: <term: number of documents containing the term;

docID1: position1, position2, ...;

docID2: position1, position2, ...;

...>

 Example: <„Frodo”: 324;

2: 3, 99;

9: 17, 191, 430, 522;

...;

321: 4>

42

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Positional index: query processing

 To support the phrase queries, we need to adapt the merge algorithm to handle
phrases and proximity

 Processing a phrase query with positional index
 (query: „blue Mordor orc”)

1. Fetch (positional) posting lists for each of the terms in the phrase query
<„blue”: 523; 2: 1, 17, 74; 4: 8, 16, 429, 563; 7: 13, 23, 191; ...>

<„Mordor”: 14; 1: 16, 31; 4: 17, 45, 430, 564; 5: 14, 19, 102; ...>

<„orc”: 341; 3: 19, 321, 512; 4: 121, 431, 565; 6: 3, 42; ...>

2. Merge the posting lists by considering not only documents but also term positions
(for matching documents)

43

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Proximity queries

 Besides phrase queries, users often pose proximity queries
 Users define how far apart the query terms may be from each other

 E.g., „Frodo” /3 „stab” /2 „orc”; where /k means „within k words from”

 Positional index can be leveraged not only for phrase queries but also for
proximity queries
 Because positional postings contain positional information for all term tokens

 Same merge algorithm can be used both for phrase queries and proximity queries

 Biword indexes lack positional information
 May support phrase queries,

 But cannot support proximity queries

44

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Proximity merge algorithm

45

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Positional index – pros and cons

 A positional index substantially expands the postings storage
 Simple index: For each term and each document in which it appears we stored only

(optionally) the frequency with which the terms appears in the document
 1 integer per term-document pair

 Positional index: Store position for each occurrence of the term in the document – n
occurrences of the term in the document -> n integers
 Positional index size is directly related to the average document size, i.e., the longer the

documents, the larger the positional index

 Benefits of a positional index outweight the storage costs
 Supporting phrase and proximity queries is important

46

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Index sizes – rules of thumb

 A positional index is 2-4 times larger than a corresponding non-positional index
 Q: Why not more than 2-4 times?

 Positional index size is 35-50% of the size of the original text

 Caveat: This approximate size relations hold only for „English-like” languages

47

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Combination schemes

 Combining different indexing strategies may be beneficial

1. Non-positional index to index some frequent phrases (e.g., „Michael Jackson”,
„hot potato”)
 More efficient than merging posting lists

2. Positional indexing as back-off for other phrases (and positional queries)
 Those that are not directly indexed in the non-positional index

 For more details on indexing combinations, see:
 H.E. Williams, J. Zobel, and D. Bahle. 2004. Fast Phrase Querying with Combined Indexes,

ACM Transactions on Information Systems.

48

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval – prons and cons

 Advantages
 Only one: simplicity (i.e., computational efficiency)

 Popular in early commercial systems (e.g., Westlaw)

 Shortcomings
 Expressing information needs as Boolean expressions is unintuitive

 Boolean IR is a pure model
 No ranking – documents are either relevant or non-relevant

 Relative importance of indexed terms is ignored

 Extended Boolean model – a variant of the Boolean model that accounts for the partial
fulfillment of the Boolean expression

49

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval – example

 The Boolean retrieval model was the primary commercial retrieval tool for over 3
decades

 Many search engines we still use daily implement Boolean IR models:
 Email, library catalog, Mac OS X Spotlight

 Prominent example: Westlaw
 Largest commercial legal search engine

 Created in 1975; ranking functionality added only in 1992

 Tens of terrabytes of data, 700K users

 Majority of users still use Boolean queries (habit :)

 Example query:
 „What is the statute of limitations in cases involving the federal tort claims act?”

 LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM

50

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Now you...

 Know what Boolean retrieval is and what Boolean queries look like

 Know what inverted index is and how to use it to answer Boolean queries

 Understand skip lists and how they may make Boolean retrieval more efficient

 Comprehend phrase queries and understand biword indexes

 Understand the structure of the positional index and how it can be used to
support phrase queries as well as proximity queries

