
1

24.2.2020.

Data and Web Science Group
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik

Universität Mannheim

CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International

2. Boolean Retrieval and Term Indexing
Prof. Dr. Goran Glavaš

Dr.Khawla Hussein

Pu

2

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

After this lecture, you’ll...

 Know what Boolean retrieval is and what Boolean queries look like

 Know what inverted index is and how to use it to answer Boolean queries

 Understand skip lists and how they may make Boolean retrieval more efficient

 Comprehend phrase queries and understand biword indexes

 Understand the structure of the positional index and how it can be used to
support phrase queries as well as proximity queries

3

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Outline

 Recap of Lecture #1

 Basic Boolean retrieval

 Inverted index

 Skip lists and faster merges

 Positional index, phrase and proximity queries

4

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Recap of the previous lecture

 Basic notions of information retrieval
 Q: What is information retrieval and what are the elements of the retrieval process?

 Q: What is an information need?

 Q: What is relevance?

 Text representations and preprocessing
 Q: Differences between unstructured and weakly-structured representations

 Q: What are the common text preprocessing steps?

 Q: Explain what tokenization, lemmatization, and stemming are?

 Q: What are stopwords and why do we remove them?

 General information retrieval model
 Q: What are the three components of every information retrieval system?

 Q: What are index terms?

5

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Recap of the previous lecture

 Index terms are all terms in the collection (i.e., the vocabulary)
 Except those we ignore in preprocessing (like stopwords)

 The set of all index terms: K = {k1, k2, ..., kt}

 Each term ki is, for each document dj, assigned a weight wij

 The weight of the index terms not appearing in the document is 0

 Document dj is represented by term vector [w1j, w2j, ..., wtj] where t is the number
of index terms

 Let g be the function that computes the weights, i.e., wij = g(ki, dj)

 Different choices for the weight-computation function g and the ranking function
r define different IR models

 Today we examine what the weighting function g and ranking function r look
like for Boolean retrieval

6

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Outline

 Recap of Lecture #1

 Basic Boolean retrieval

 Inverted index

 Skip lists and faster merges

 Positional index, phrase and proximity queries

7

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval: case study

 Case study: you’re an SciFi and Fantasy fan who is studying similarities and
differences between the Star Trek, Lord of the Rings, and Harry Potter

 Information need: Contexts in which there are mentions of “aliens” AND
“swords” but NOT “wizards”

 Q: How would you do this?

 Attempt #1 (regular Joe’s approach): Let’s (1) grep all documents for “aliens” and
“swords” and then (2) take out the lines containing “wizards”
 Q: Why is this not a good approach?

 A: Slow for large corpora

 A: Does not support other types of information needs, e.g., find documents where
“aliens” appears near “swords”

8

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval

 Boolean retrieval model is arguably the simplest IR model

 Queries are Boolean expressions
 E.g., “aliens” AND “swords” AND NOT “wizards”

 The search engine returns all documents from the collection that satisfy the
Boolean expression

9

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval

 Let’s analyze Boolean IR model in terms of three common IR components

1. Query representation

 Query q is given as a propositional logic formula over index terms

 Index terms are connected via Boolean operators (∧, ∨) and can be negated (¬)

 Being a propositional logic formula, each query can be transformed into
disjunctive normal form (DNF)

 q = c1 ∨ c2 ∨ · · · ∨ cn – where cl is the l-th conjunctive component of q’s DNF

 E.g., cl = tl1 ∧ ¬tl2 ∧ … ∧ tlk

10

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval

 Let’s analyze Boolean IR model in terms of three common IR components

2. Document representation
 Each document d in the collection is represented as a bag of words

 Strictly speaking, it’s a set of words, not a bag (i.e., not a multiset)

 The frequency of terms is irrelevant, only whether the term appears in the document

 Thus, term weights are all binary – wij ∈ {0, 1}

 wij = 1 if document dj contains the index term ti , w ij = 0 otherwise

11

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval

 Let’s analyze Boolean IR model in terms of three common IR components

3. Relevance of the document for the query

 The document is relevant for the query if it satisfies the propositional logic
formula of the query

 As queries are in DNF this means the document must satisfy at least one of the
conjunctive components cl of the query q

1, if ∃cl | ∀ti ∈ terms(cl), wij = 1

0, otherwise.
relevance(dj, q) =

12

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval

 Does Google use Boolean retrieval?
 Google’s default interpretation of the query “Frodo gave Sam the sword” is

“Frodo” AND “gave” AND “Sam” AND “sword”

 A retrieved document might not contain some of the query terms if
 The full Boolean expression generates very few relevant documents

 The result contains some morphological variation or a synonym of the term

 If your query is long, Google discards less relevant terms

 Boolean retrieval and results ranking
 Boolean retrieval returns matching documents in no particular order

 Well-designed search engines need to rank the relevant results

13

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval – example

 Let us have the following set of index terms
 K = { “Frodo”, “Sam”, “blue”, “sword”, “orc”, “Mordor”}

 Let us have the following collection of documents
 d1: „Frodo stabbed the orc with the red sword”

 d2: „Frodo and Sam used the blue lamp to locate orcs”

 d3: „Sam killed many orcs in Mordor with the blue sword”

 Which documents are relevant for the following queries?
 q1: („Frodo” AND „orc” AND „sword”) OR („Frodo” AND „blue”)

 {d1, d2}

 q2: („Sam” AND „blue” AND NOT „Frodo”) OR („Sam” AND „orc” AND „Mordor”)
 {d3}

14

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval – incidence matrix

 Attempt #2: use the incidence matrix to answer queries like
 „Sam” AND „blue” AND NOT „Frodo”

 Term-document incidence matrix

Term d1: „Frodo stabbed the orc
with the red sword”

d2: Frodo and Sam used the
blue lamp to locate orcs

d3: Sam killed many orcs in
Mordor with the blue sword

Frodo True (1) True (1) False (0)

Sam False (0) True (1) True (1)

blue False (0) True (1) True (1)

sword True (1) False (0) True (1)

orc True (1) True (1) True (1)

Mordor False (0) False (0) True (1)

15

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval – incidence matrix

 Query: „Sam” AND „blue” AND NOT „Frodo”

 „Sam”: d1 – False; d2 – True; d3 – True -> [0, 1, 1]

 „blue”: d1 – False; d2 – True; d3 – True -> [0, 1, 1]

 „Frodo”: d1 –True; d2 – True; d3 – False -> [1, 1, 0]

Term d1: Frodo stabbed the orc
with the red sword

d2: Frodo and Sam used the
blue lamp to locate orcs

d3: Sam killed many orcs in
Mordor with the blue sword

Frodo True (1) True (1) False (0)

Sam False (0) True (1) True (1)

blue False (0) True (1) True (1)

16

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval – incidence matrix

 Incidence matrix – 0/1 vector for each index term

 To answer the query „Sam” AND „blue” AND NOT „Frodo” we just need to
1. Take the vectors for terms „Sam” and „blue”

„Sam” -> [0, 1, 1]; „blue” -> [0, 1, 1]

2. Invert the vector for the term „Frodo”

„Frodo” -> [1, 1, 0]; thus NOT „Frodo” -> [0, 0, 1]

3. Perform a bitwise conjunction (bitwise AND) on these three vectors
[0, 1, 1] AND [0, 1, 1] AND [0, 0, 1] -> [0, 0, 1]

 d3 is the only relevant document for the query

17

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval – incidence matrices

 Incidence matrix is a good solution for small collections

 However, real world collections can be very large
 E.g., N = 1 million of documents, each around 1000 words

 E.g., 500 thousand index terms

 The incidence matrix size is 500K x 1M -> 0.5 trillion elements (0’s and 1’s)
 But only 1000 x 1M = 1 billion 1’s – incidence matrix is very sparse

 Q: What would be a better solution?
 A representation that would remedy for the sparseness of incidence matrices

 A: We can only store positions of 1’s
 We know that the rest are 0’s

18

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Outline

 Recap of Lecture #1

 Basic Boolean retrieval

 Inverted index

 Skip lists and faster merges

 Positional index, phrase and proximity queries

19

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Inverted index

 Inverted index is a data structure for computationally efficient retrieval

 Inverted index contains a list of references to documents for all index terms
 For each term t we store the list of all documents that contain t
 Documents are represented with their identifier numbers (ordinal, starting from 1)

„Frodo” -> [1, 2, 7, 19, 174, 210, 331, 2046]
„Sam” -> [2, 3, 4, 7, 11, 94, 210, 1137]
„blue” -> [2, 3, 24, 2001]

 The list of documents that contains a term is called a posting list (or just posting)
 In memory, postings are implemented as either

 Linked lists or

 Variable length arrays (Q: why not fixed length arrays?)

 Q: Postings are always sorted. Why?

20

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Inverted index – query processing

 The inverted index is an efficient structure for storing term incidences
 Requires much less storage than full incidence matrix

 But we need to couple the storage with an efficient algorithm(s) for finding
relevant documents for queries

 Consider the query „Sam” AND „Frodo”
1. Retrieve the posting list for the term „Sam”

„Sam” -> [2, 3, 4, 7, 11, 94, 210, 1137]

2. Retrieve the posting list for the term „Frodo”
„Frodo” -> [1, 2, 6, 7, 19, 174, 210, 331, 2046]

3. Find the intersection between the two posting lists (i.e., „merge” the postings)
[2, 3, 4, 7, 11, 94, 210, 1137] ∩ [1, 2, 7, 19, 174, 210, 331, 2046] -> [2, 7, 210]

21

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

The merge

 If posting lists are sorted, the time of the merge is linear in the total number of
posting entries
 The „merge” is performed by simoultaneously walking through the two postings

 If the first posting has x elements and second posting has y elements, the (worst-
case) time complexity of the merge is O(x+y)

 If the posting lists would not be sorted, the merge complexity would be quadratic

 For each element in the first list, we must, in the worst case go through the whole
second list

 Complexity is O(xy)

22

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

The merge algorithm

 The following is the pseudocode of the algorithm for merging (sorted) postings

23

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

The merge algorithm

 The given algorithm works for merges for queries of type t1 AND t2

 What about other query constructs?
 t1 AND NOT t2

 t1 OR t2

 Q: Can we perform the merge for these constructs in linear time O(x+y)?

 What about an arbitrary Boolean formula?
 („Sam” OR „Frodo”) AND NOT („orc” OR „Mordor”)

 Q: Can we always merge in linear time?
 Linear in what?

 Q: Can we maybe do better than linear complexity?

24

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Query optimization

 What is the best order for processing the query?

 Consider a query which is a conjunction of n terms
 We get the postings list for each of the n terms and merge them together

 Merge is a binary operator
 Q: Does it matter in which order we do the merges?

Query: „Frodo” AND „Sam” AND „blue”

Postings:

„Frodo” -> [1, 2, 7, 19, 174, 210, 331, 2046]

„Sam” -> [2, 3, 4, 7, 11, 94, 210, 1137]

„blue” -> [2, 3, 24, 2001]

25

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Query optimization

 The set of binary merges is going to be executed fastest if we start from the
shortest postings and perform merges in increasing order of posting length

Query: „Frodo” AND „Sam” AND „blue”

Postings:

„Frodo” -> [1, 2, 7, 19, 174, 210, 2046] (length = 7)

„Sam” -> [2, 3, 4, 7, 11, 94, 210, 1137] (length = 8)

„blue” -> [2, 3, 24, 2001] (length = 4)

Merges (count comparisons):

(„Frodo” AND „Sam”) AND „blue” -> complexity: 11 + 5 = 16 comparisons

„Frodo” AND („Sam” AND „blue”) -> complexity: 9 + 3 = 12 comparisons

(„Frodo” AND „blue”) AND „Sam” -> complexity: 8 + 1= 9 comparisons

26

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Merge algorithm for conjunctive queries

 The following is the algorithm for efficient merging of conjunctive queries with
multiple terms

27

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

General Boolean query optimization

 Each Boolean query can be transformed to a disjunctive normal form (DNF)
(t11 AND ... AND t1n) OR

(t21 AND ... AND t2n) OR

... OR

(tk1 AND ... AND tkn)

 Algorithm:
1. For each conjunction (tj1 AND ... AND tjn), perform the optimized conjunction

merge algorithm from the previous slide and obtain conjunction postings

2. For each pair of conjunction postings estimate the cost of performing an OR
operation as the sum of lengths of these two conjunction postings

3. Process in increasing order of OR sizes

28

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

General Boolean query optimization

 Query:
(„Frodo” AND „orc” AND „sword”) OR („Frodo” AND „blue”) OR („orc” AND „blue”)

 Term postings:
„Frodo” -> [1, 2, 7, 19, 174, 210, 331, 2046] (length = 8)
„orc” -> [2, 3, 7, 11, 94, 210] (length = 6)
„sword” -> [2, 7, 24, 2001] (length = 4)
„blue” -> [8, 19, 94] (length = 3)

 Conjunction postings:
(„Frodo” AND „orc” AND „sword”) -> [2,7]
(„Frodo” AND „blue”) -> [19]
(„orc” AND „blue”) -> [94]

 OR merges:
 First: („Frodo” AND „blue”) OR („orc” AND „blue”) -> [19, 94]
 Second: result first OR („Frodo” AND „orc” AND „sword”) -> [2,7,19,94]

 Exercise: compute the real complexity of processing this query

29

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Outline

 Recap of Lecture #1

 Basic Boolean retrieval

 Inverted index

 Skip pointers and faster merges

 Positional index, phrase and proximity queries

30

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Basic merge and linear complexity

 If posting lists are sorted, the time of the merge is linear in the total number of
posting entries
 The „merge” is performed by simoultaneously walking through the two postings

 If the first posting has x elements and second posting has y elements, the
computational complexity of the merge is O(x+y)

 Q: Can we do better than linear complexity?
 Yes, if we are dealing with read-only indexes!

 Q: How?
 By enriching postings with additional pointers

 These pointers are called skip pointers

31

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Merge with skip pointers

 Consider the merge between the following postings:
„Sam” -> [1, 2, 7, 174, 210, 331, 2046]

„Frodo” -> [2, 3, 4, 7, 21, 29, 38, 91, 101, 122, 134, 171, 1137]

 With the basic merge algorithm we need to compare all red numbers (21, 29, ..., 171)
from the „Frodo” posting list with 174 from the ”Sam” posting list

 What if we could skip directly from 21 to 171 in the „Frodo” posting list?
 We would save many comparisons

 This would not affect the merge result at all

 The idea is to skip parts of posting lists that lead to empty results
 Central question: where do we place the skip pointers?

32

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Augmenting postings with skip pointers

„Sam” -> [1, 2, 7, 174, 210, 331, 2046]

„Frodo” -> [2, 3, 4, 7, 21, 29, 38, 91, 101, 122, 134, 171, 1137]

 Suppose we went through the posting lists until we processed 7 in both lists
 I.e., we found a match at 7 and added it to the merge result

 We then have element 174 in the „Sam” list and 21 in the „Frodo” list
 Instead of going linearly through the lists, we can try to jump via skip pointers

 Skip successor of 21 in the „Frodo” list is 134, which is still smaller than the current
element 174 in the „Sam” list

 This means that we can safely, i.e., without missing any matches, skip to 134 in the
„Frodo” list

 Q: What if the skip from 21 in „Frodo” list was larger than 174?

174 2046

21 134 1137

33

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Merge with skip pointers

 The following is the pseudocode of the merge algorithm on lists augmented with
skip pointers

34

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Merge with skip pointers

 Central questions:
 How frequent should the skips be?
 Where to place the skip pointers?

 There is a tradeoff:
 Option 1: More skips

 Shorter skip spans
 More likely to skip
 But a lot of skip position comparisons (so the complexity isn’t very sublinear)
 More data to store (larger index)

 Option 2: Fewer skips
 Longer skip spans
 Less likely to skip (fewer successful skips)
 But fewer pointer comparisons
 Less data to store (smaller index)

35

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Placing skips

 Simple heuristic that works well in practice
 For postings of length L, use L evenly-spaced skip pointers

 Easy to implement if the index is read-only
 The lengths of the posting lists do not change

 Maintenance required when index is updated
 Not recommended for indexes that are being updated frequently

 This heuristic ignores the distribution of terms over indexed documents
 Q: How to improve the placement of skip pointers taking into account distributions?

36

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Outline

 Recap of Lecture #1

 Basic Boolean retrieval

 Inverted index

 Skip pointers and faster merges

 Positional index, phrase and proximity queries

37

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Phrase queries

 Some queries contain phrases which are not meant to be split into terms, e.g.,
 Named entities („Berkeley university”, „San Francisco”)

 Collocations and idioms („fast food”, „hot potato”)

 We don’t want documents containing these words separately to be considered
relevant
 E.g., „The lady thought the tea was too hot and the potatoes were not well-cooked”

should not be relevant for the query „hot potato”

 For handling phrase queries, it is no longer enough to store only posting lists for
individual terms

38

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Phrase queries: biword index

 Besides individual terms, we could additionally index pairs of consecutive terms

 For example, the text „Frodo stabbed the orc with the red sword” would generate
the following biwords (with stopword removal in place):
 „Frodo stabbed”, „stabbed orc”, „orc red”, „red sword”

 Each of the biwords becomes an index term

 The query is also transformed into biwords for lookup and merging
 Query: „Sam stabbed the orc” -> „Sam stabbed”, „stabbed orc”

 The query processing – posting lookup and merging – is then performed in
exactly the same way as for single-token terms

39

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Phrase queries: extended biwords

 Indexing all biwords often doesn’t make much sense
 The vast majority of biwords are not real-world „concepts” users would look for

 Not named entities, collocations, idioms, etc.

 The number of biwords in the document collection is much larger than number of
terms (combinatorial explosion)

 Extension: Let’s index only biwords that have a higher probability of being
concepts that users might search for
 Biwords that satisfy certain part-of-speech patterns (e.g., noun phrases)

 E.g., all sequences of POS-tags of the form NX*N where N is a noun and X is a
preposition or article
 E.g., „catcher in the rye” has the POS-signature N X X N

 Annotate with parts-of-speech and extract extended biwords (NX*N)
 Look up in the index: „catcher rye”

40

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Issues with biword indexes

1. Indexing biwords can lead to false positives
 Because we index many biwords that are not concepts

 E.g., document „Pequenos Angeles, United States won the competition” will be
relevant for the query „Los Angeles, United States”
 Both representations will contain the non-conceptual biword „Angeles United”

2. Large index
 Combinatorial explosion

 Storing all biwords creates very large index

 Storing tri-words already infeasible for reasonably large collections

 Alternative approach
 Index only small subset of most frequent or most relevant biwords (or larger n-

words), along with unigram terms

41

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Phrase queries: positional index

 A better alternative to biword (or generally n-word) indexes are positional indexes

 Positional index is an extended index
 For each document that contains the index term t we store positions of all tokens of term t in

the document

 Format: <term: number of documents containing the term;

docID1: position1, position2, ...;

docID2: position1, position2, ...;

...>

 Example: <„Frodo”: 324;

2: 3, 99;

9: 17, 191, 430, 522;

...;

321: 4>

42

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Positional index: query processing

 To support the phrase queries, we need to adapt the merge algorithm to handle
phrases and proximity

 Processing a phrase query with positional index
 (query: „blue Mordor orc”)

1. Fetch (positional) posting lists for each of the terms in the phrase query
<„blue”: 523; 2: 1, 17, 74; 4: 8, 16, 429, 563; 7: 13, 23, 191; ...>

<„Mordor”: 14; 1: 16, 31; 4: 17, 45, 430, 564; 5: 14, 19, 102; ...>

<„orc”: 341; 3: 19, 321, 512; 4: 121, 431, 565; 6: 3, 42; ...>

2. Merge the posting lists by considering not only documents but also term positions
(for matching documents)

43

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Proximity queries

 Besides phrase queries, users often pose proximity queries
 Users define how far apart the query terms may be from each other

 E.g., „Frodo” /3 „stab” /2 „orc”; where /k means „within k words from”

 Positional index can be leveraged not only for phrase queries but also for
proximity queries
 Because positional postings contain positional information for all term tokens

 Same merge algorithm can be used both for phrase queries and proximity queries

 Biword indexes lack positional information
 May support phrase queries,

 But cannot support proximity queries

44

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Proximity merge algorithm

45

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Positional index – pros and cons

 A positional index substantially expands the postings storage
 Simple index: For each term and each document in which it appears we stored only

(optionally) the frequency with which the terms appears in the document
 1 integer per term-document pair

 Positional index: Store position for each occurrence of the term in the document – n
occurrences of the term in the document -> n integers
 Positional index size is directly related to the average document size, i.e., the longer the

documents, the larger the positional index

 Benefits of a positional index outweight the storage costs
 Supporting phrase and proximity queries is important

46

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Index sizes – rules of thumb

 A positional index is 2-4 times larger than a corresponding non-positional index
 Q: Why not more than 2-4 times?

 Positional index size is 35-50% of the size of the original text

 Caveat: This approximate size relations hold only for „English-like” languages

47

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Combination schemes

 Combining different indexing strategies may be beneficial

1. Non-positional index to index some frequent phrases (e.g., „Michael Jackson”,
„hot potato”)
 More efficient than merging posting lists

2. Positional indexing as back-off for other phrases (and positional queries)
 Those that are not directly indexed in the non-positional index

 For more details on indexing combinations, see:
 H.E. Williams, J. Zobel, and D. Bahle. 2004. Fast Phrase Querying with Combined Indexes,

ACM Transactions on Information Systems.

48

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval – prons and cons

 Advantages
 Only one: simplicity (i.e., computational efficiency)

 Popular in early commercial systems (e.g., Westlaw)

 Shortcomings
 Expressing information needs as Boolean expressions is unintuitive

 Boolean IR is a pure model
 No ranking – documents are either relevant or non-relevant

 Relative importance of indexed terms is ignored

 Extended Boolean model – a variant of the Boolean model that accounts for the partial
fulfillment of the Boolean expression

49

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Boolean retrieval – example

 The Boolean retrieval model was the primary commercial retrieval tool for over 3
decades

 Many search engines we still use daily implement Boolean IR models:
 Email, library catalog, Mac OS X Spotlight

 Prominent example: Westlaw
 Largest commercial legal search engine

 Created in 1975; ranking functionality added only in 1992

 Tens of terrabytes of data, 700K users

 Majority of users still use Boolean queries (habit :)

 Example query:
 „What is the statute of limitations in cases involving the federal tort claims act?”

 LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM

50

24.2.2020.IR & WS, Lecture 2: Boolean Retrieval and Term Indexing

Now you...

 Know what Boolean retrieval is and what Boolean queries look like

 Know what inverted index is and how to use it to answer Boolean queries

 Understand skip lists and how they may make Boolean retrieval more efficient

 Comprehend phrase queries and understand biword indexes

 Understand the structure of the positional index and how it can be used to
support phrase queries as well as proximity queries

